Konsep Persamaan Lingkaran

Bentuk segitiga. Dari situ diketahui alas dan tingginya berapa, kemudian hitung sisi miringnya menggunakan rumus teorema pythagoras.

d = akar dari delta x^2 + delta y^2

Maka harus mencari Δx dan Δy terlebih dahulu. Caranya seperti ini:

(Δx)2=(x-a)2

(Δy)2=(y-b)2

Sehingga, bisa dituliskan juga rumus phytagorasnya:

d = akar dari (x-a)^2 + (y-b)^2

d^2 = (x-a)^2 + (y-b)^2

Definisi Lingkaran

"Lingkaran adalah kumpulan titik-titik pada bidang datar (dua dimensi) dan memiliki jarak yang sama terhadap suatu titik pusat."

Nah, jarak antara suatu titik dan titik pusat disebut jari-jari lingkaran. Sedangkan, garis yang terbentang dari titik ujung ke titik ujung lainnya melalui titik tengah disebut diameter. Jadi, diameter itu dua kali ukuran jari-jari lingkaran. 

Ada lagi nih yang namanya tali busur, yaitu garis yang terbentang dari suatu titik ke titik lainnya tanpa melalui titik tengah.

Menghitung jari-jari lingkaran

Mencari jari jari bisa menggunakan konsep seperti pada pythagoras sebelumnya. Jika diminta untuk mencari jari-jari lingkaran yang terbentang dari titik (a,b) ke titik (x,y), maka dapat menggunakan teorema pythagoras.

Buat dulu bentuk segitiga siku-sikunya. Kemudian, hitung menggunakan teorema pythagoras seperti ini:

r = akar dari (x-a)^2 + (y-b)^2

Namun ada dua aturan yang perlu dipahami dari suatu bentuk persamaan lingkaran, yaitu pusat (0,0) dan (a,b) dengan masing-masingnya berjari-jari r.

Jika suatu lingkaran memiliki pusat (0,0) dengan jari-jari r, maka bentuk persamaannya x2+y2=r2.

Jika suatu lingkaran memiliki pusat (a,b) dengan jari-jari r, maka bentuk persamaannya 

(x-a)2+(y-b)2=r2.

x2+y2+Ax+By-C=0

Contoh_Soal_Persamaan_Lingkaran

Tentukan persamaan lingkaran dengan pusat (1,2) dan memiliki jari-jari 5. Tentukan persamaan lingkarannya!

Jawab:

p = (1,2) → pusat lingkaran (a,b)

r  = 5

Karena pusat lingkarannya (a,b), maka kita gunakan aturan (x-a)2+(y-b)2=r2.

(x-a)2+(y-b)2=r2

(x-1)2+(y-2)2=25

Selanjutnya, konversi bentuk standar ini ke dalam bentuk umumnya:

x2-2x+1+y2-4y+4=25

x2+y2-2x-4y-20=0

Sehingga, bentuk umum persamaan lingkaran dengan pusat (2,3) dan jari-jari 5 adalah x2+y2-2x-4y-20=0.